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Abstract— The task of planning and controlling robot motion
in practical applications is often complicated by the effects of
model uncertainties and environment disturbances. We present
in this paper a systematic approach for generating robust
motion control strategies to satisfy high level specifications of
safety, target attainability, and invariance, under unknown but
bounded time-varying disturbances. The motion planning task
is decomposed into the two sub-problems of finite horizon reach
while avoid and infinite horizon invariance. The set of states for
which each of the sub-problems is robustly feasible is computed
via iterative reachability calculations under a differential game
framework. We will discuss how the results of this computation
can be used to inform selections of control inputs based upon
state measurements at run-time and provide an algorithm
for implementing the corresponding feedback control policies.
Finally, we demonstrate an experimental application of this
method to the control of an autonomous helicopter in tracking
a moving ground vehicle.

I. INTRODUCTION

An important consideration in ensuring safe and reliable
deployment of mobile robots and autonomous vehicles is
whether the desired objectives can be met despite uncertain-
ties in the operating condition. In this paper, we consider
the problem of constructing feedback policies to satisfy
motion planning task specifications of the following form:
from a set of initial robot configurations, reach a set of
goal configurations, and then remain there indefinitely, sub-
ject to system dynamics, safety constraints, and unknown
but bounded, time-varying disturbances. The controller is
assumed to operate at a high level control layer, where
the control commands may be symbolic, in the form of a
finite set of maneuvers (e.g. move forward, turn left, turn
right), parameterized by a continuous variable (e.g. velocity,
acceleration, turn rate). Under the setting of a sampled
data system, the selection of controls is based upon state
measurements at discrete sampling instants and the inputs
are held constant on sampling intervals.

It is well-known that motion planning under state and
input constraints can be a difficult problem [1], [2], even
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in a deterministic setting. Global search methods include
visibility graphs [3], [4] and cell decomposition [5], [6].
Real-time planning methods such as probabilistic roadmaps
[7], [8] and artificial potential fields [9], [10] reduce the
computational complexities through probabilistic sampling
and reactive local planning. These methods are shown ex-
perimentally to perform well under small deviations from
the assumed nominal conditions. However, under the effects
of model inaccuracy, sensor and actuator noise, or external
disturbances, deterministic guarantees about the performance
of the previously mentioned methods become difficult to
formulate and prove.

Motion planning under uncertainty is a significantly more
complicated problem [11], due to the fact that under an
unknown disturbance, the actual motion undertaken by the
robot could vary from one execution to another, even for
the same starting configuration and control input sequence.
Thus, instead of considering the feasibility of a single
deterministic trajectory, one needs to consider the feasibil-
ity of a family of possible trajectories consequent on the
chosen motion strategy. This problem is addressed in [12]–
[15] using preimage backchaining, in the context of fine-
motion planning. In this approach, geometric arguments are
used to construct preimages of the goal set, namely the
set of configurations that are guaranteed to reach the goal
set under some sequence of piecewise constant velocity
vectors, regardless of control and sensing errors. However,
with more complicated nominal dynamics, the computation
of the preimage becomes involved. For such situations, a
method is proposed in [16] for constructing local feedback
controllers whose domain of attraction is approximated by
Lyapunov functions. Motion planning is then performed
by backchaining of the local controllers. More recently,
closed-loop rapidly-exploring random trees (CL-RRT) [17]
have been proposed to provide feasibility guarantees under
bounded disturbances, using conservative estimates of the
trajectory tracking error to tighten constraints on the feasible
planning space and input set.

The use of a discrete set of controllers to perform motion
planning is motivated by reasons of computation and imple-
mentation. In the work of [18] and [19], the authors propose
methods for constructing a library of flight maneuvers for an
autonomous helicopter, with compatible initial and terminal
conditions, so as to reduce a difficult continuous planning
problem to a selection of maneuver sequence and switching
times. In the work of [20] and [21], the authors consider the
problem of synthesizing motion plans that realize high level
objectives specified in linear temporal logic. Discrete ab-



stractions are constructed of the continuous robot motion by
partitioning the state space and appropriately designing con-
tinuous controllers for each partition. The above approaches
assume that the continuous dynamics are not perturbed by
time-varying disturbances, which complicates the task of
ensuring the correctness of the discrete abstractions.

We propose in this work a systematic approach for com-
puting the robust feasible sets of the motion planning prob-
lem via iterative reachability calculations, and then using the
results of the computation to synthesize feedback policies for
closed-loop control of robot motion. Our approach is based
upon the game theoretic framework for hybrid controller
design described in [22] and [23]. This framework has
been applied successfully to problems of flight envelope
protection, automated highway platooning, and provably safe
aerobatic maneuvers [24]–[26], as a means for open-loop
system design and verification. The focus of this paper is
instead on automatic synthesis of closed-loop policies.

The advantages of the proposed method are several-fold.
First, the type of continuous dynamics that can be handled
is quite general, although restricted to low dimensions (3-4
continuous states) due to computational concerns. Second,
performance guarantees are ensured under worst case dis-
turbance behavior, using techniques from differential games.
Third, in comparison with open-loop methods for motion
planning, feedback policies mitigate the effects of distur-
bance by allowing the system to respond to changes in the
system state at run-time. Finally, the control solution for
reaching the goal region can be viewed as a robust minimum
time to reach controller.

Part of the methodology described in this paper is pre-
sented in the general context of switched nonlinear systems
in [27]. Here we specialize the model and results for appli-
cation to motion planning problems. The controller synthesis
procedure is also extended to allow the robot to remain
indefinitely in a goal region, as opposed to merely reaching
it in finite time. Finally, rather than a numerical simulation,
experimental results will be presented of the application
of the proposed approach to the control of a quadrotor
helicopter under dynamic uncertainty.

II. PROBLEM FORMULATION

The configuration of the robot at any given time is
assumed to be summarized by a state vector x ∈ Rn, where n
is the dimension of the state space. To effect changes to this
configuration, it is further assumed that we have access to a
finite set of discrete modes Q = {q1, q2, ..., qm} describing
the set of high level commands (e.g. move forward, turn left,
turn right). Within each mode qi, one can choose a scalar
valued control input ui, which can be a parametrization of the
individual maneuver (e.g. velocity, acceleration, turn rate).
For computational purposes and practical implementation
considerations, we discretize the input range of ui into a
finite number of levels, namely Ui =

{
u1i , u

2
i , ..., u

Li
i

}
⊂ R,

where Li is the number of quantization levels. Finally, a
vector valued time-varying function di is used to capture the

effect of disturbance on the system dynamics in mode qi. It
is assumed that di takes on a bounded range Di ⊂ RMi .

Starting from some initial time t = 0 and initial configura-
tion x0, we model the continuous motion of the robot, as per
Newtonian dynamical models, by the ordinary differential
equation

ẋ(t) = fq(t)(x(t), u(t), d(t)), x(0) = x0 (1)

where q(t) ∈ Q, u(t) ∈ Uq(t), and d(t) ∈ Dq(t), which can
be used to model the effects of model inaccuracy, actuator
noise, environment disturbances, or the unknown inputs of
a moving object, as long as the bounds on d are known
beforehand or can be conservatively estimated.

It is assumed that measurements of the system state x
are received at sampling instants kT , k = 1, 2, ..., where
T is the sampling period, and that the inputs (q(t), u(t))
are held constant on sampling intervals. Specifically, based
upon a state measurement x(kT ), we select qk ∈ Q and
uk ∈ Uqk and apply the input q(t) ≡ qk and u(t) ≡ uk, for
t ∈ [kT, (k+ 1)T ). On the other hand, d is not restricted to
be piecewise constant, as long as d(t) ∈ Dqk is satisfied for
t ∈ [kT, (k + 1)T ).

We denote by W ⊂ Rn the desired goal set, and by
A ⊂ Rn the avoid set (or unsafe set), describing for example
physical obstacles or unsafe operating regions. The problem
we would like to solve is then, roughly speaking, to construct
a control policy as a rule of selecting (qk, uk) based upon
measurement x(kT ), so as to drive the system state x into
the set W within a finite number of steps N , while avoiding
the set A, and then remain in W for all time steps k > N ,
regardless of the possible realizations of disturbance d at
run-time. This can be naturally decomposed into the two
sub-problems of reaching W in finite time and then staying
inside W over infinite time. To state this more precisely, a
brief discussion on the permissible control and disturbance
policies is needed.

For some finite horizon [kT,NT ), define a control policy
which only depends on the state measurements at sampling
instants by the sequence πk→N = (µk, µk+1, ...µN−1) of
state feedback maps µj : Rn → V from the state space to
the control input space V =

⋃
qi∈Q qi × Ui. We denote the

set of such admissible control policies by Pk→N .
Under a differential game setting, we assume that the

disturbance has full knowledge of the control input selected
on any sampling interval. Then, a permissible disturbance
strategy over the time horizon [kT,NT ) is defined by the
sequence γk→N = (νk, νk+1, ...νN−1) of maps νj : V →⋃

qi∈QDi, satisfying νj(qi, ui) ∈ Di, where Di is the set of
possible realizations of di on sampling interval [kT, (k +
1)T ). We denote the set of such permissible disturbance
strategies by Dk→N .

It should be noted that this information structure allows
d(t) to be chosen rationally based upon both the state x(t)
and the input u(t) [28], which could be the case if d is
used to model the action of another robot or autonomous
vehicle with competing objectives. However, this may be a
conservative assumption for random but bounded noise.



With these definitions, the desired task specification can be
met by solving the following two sub-problems in sequence.

Problem 1: (Infinite Horizon Invariance) Given system
(1) and set W : 1) compute the set of states EInv ⊂ W
such that for x0 ∈ EInv, there exists an admissible control
policy π0→∞ ∈ P0→∞ so that for any disturbance strategy
γ0→∞ ∈ D0→∞, the closed-loop state trajectory xcl(·)
satisfies xcl(t) ∈ EInv for all t ∈ [0,∞); 2) synthesize
a time-invariant state feedback law FInv(x) such that for
any initial condition x0 ∈ EInv, the closed-loop trajectory
satisfies the above conditions.

Using the solution of Problem 1, we choose some set R ⊂
EInv and then solve the problem below.

Problem 2: (Finite Horizon Reach-Avoid) Given system
(1) and sets R, A: 1) compute the set of states ERA ⊂
Rn such that for x0 ∈ ERA, there exists an admissible
control policy π0→N ∈ P0→N so that for any disturbance
strategy γ0→N ∈ D0→N , the closed-loop state trajectory
xcl(·) satisfies xcl(kT ) ∈ R for some k ∈ {0, 1, . . . , N},
and xcl(t) /∈ A for all t ∈ [0, kT ]; 2) synthesize a time-
varying state feedback law FRA(x, k), k = 0, 1, . . . , N − 1
such that for any initial condition x0 ∈ ERA, the closed-loop
trajectory satisfies the above conditions.

In the statements of the two sub-problems, xcl(·) is the
closed-loop trajectory determined by the initial condition x0,
control policy π, and disturbance strategy γ, under dynamics
(1). Due to the unpredictable nature of the disturbance,
we choose to synthesize a feedback policy π rather than a
sequence of inputs (qk, uk), k = 0, 1, .... It is possible that a
different sequence of inputs is obtained for each execution,
using the same policy π, due to different realizations of the
disturbance.

III. REACHABLE SET COMPUTATION AND CONTROLLER
SYNTHESIS

In this section, an algorithm will be given to compute,
in an automated fashion, the set of initial conditions ERA

for which the finite horizon reach-avoid problem is feasible,
using Hamilton-Jacobi reachability analysis [28]. It will be
shown how this algorithm can be extended to compute the
set EInv solving the invariance problem. From the results
of these computations, we proceed to synthesize FRA and
FInv as set-valued state feedback laws and discuss how they
can be implemented in closed-loop control to accomplish the
overall motion planning objectives.

For the discussion in this section, we denote by Ck→N the
set of initial conditions for which the reach-avoid problem
is feasible over the time horizon [kT,NT ). The offline
computation will focus on generating representations of
the sets Ck→N , while the online implementation uses the
information provided by Ck→N to make input selections
based upon state measurements.

A. Finite Horizon Reach-Avoid Set Computation

In order to formulate an iterative algorithm for computing
Ck→N , we first consider the simpler problem of driving the
state x of the robot into a set R ⊂ Rn at the end of a

sampling interval, while avoiding a set A ⊂ Rn, namely
x(T ) ∈ R and x(t) /∈ A, ∀t ∈ [0, T ]. The one-step feedback
policy is described by a selection of (qi, ui) ∈ V for
each feasible initial condition x0 ∈ Rn, while the one-step
disturbance strategy corresponds to a selection of di(·) ∈ Di

on [0, T ]. We denote the set of feasible initial conditions for
this problem by RA(R,A, T ).

For a choice of (qi, ui) ∈ V , we define Preqi,ui

d (A, T ) as
the set of initial conditions x0 for which there exists some
choice of disturbance di(·) ∈ Di on [0, T ], such that the
state trajectory satisfies x(t) ∈ A for some t ∈ [0, T ], where
x(·) is the solution of the ODE ẋ = fq(x, u, di), x(0) =
x0, (q(t), u(t)) ≡ (qi, ui) on the sampling interval [0, T ].
Suppose A is the set of obstacles or unsafe operating regions,
this describes the set of initial conditions that can be rendered
unsafe within one sampling interval under the input (qi, ui).

Under suitable technical conditions given in [28], this
set can be computed using a Hamilton-Jacobi-Isaacs (HJI)
partial differential equation (PDE). To perform this compu-
tation, we use level set representation of sets. Specifically,
suppose a set G ⊂ Rn is the set of all states x such
that φG(x) ≤ 0 for some function φG : Rn → R, then
φG is a level set representation of G. For example, a disc
centered on the origin with radius r can be represented by
φD(0,r)(x1, x2) =

√
x21 + x22 − r.

Let φ : Rn× [−T, 0]→ R be the viscosity solution of the
terminal value HJI PDE

∂φ

∂t
+min

[
0, H

(
x,
∂φ

∂x

)]
= 0, φ(x, 0) = φA(x) (2)

where the optimal Hamiltonian is given by

H (x, p) = min
di∈Di

pT fqi(x, ui, di)

Then by a special case of the argument presented in [28],
Preqi,ui

d (A, T ) = {x ∈ Rn, φ(x,−T ) ≤ 0}. A numerical
toolbox as described in [29] can be used to compute the
solution to equation (2).

Next, we define for a choice of (qi, ui) ∈ V the set
Pre

qi,ui

u (R, T ) of initial conditions x0 for which regardless
of the realization of the disturbance di(·) ∈ Di on [0, T ], the
state trajectory satisfies x(T ) ∈ R, where x(·) is the solution
of the ODE ẋ = fq(x, u, di), x(0) = x0, (q(t), u(t)) ≡
(qi, ui) on the sampling interval [0, T ]. Suppose R is the
target set, then this describes the set of initial conditions that
can reach the target set after one sampling interval under
the input (qi, ui). This set can be computed by a slight
modification of equation (2).

Putting these definitions together, we find that the set of
initial condtions that can be driven into a set R ⊂ Rn at the
end of a sampling interval, while avoiding a set A ⊂ Rn

using a choice of (qi, ui) ∈ V has the concise representation

RAqi,ui(R,A, T ) = Pre
qi,ui

u (R, T )\Preqi,ui

d (A, T ).

We note that for sets G1, G2 with level set represen-
tations φG1

and φG2
, the representation for φG1

\φG2

is computed simply by taking pointwise maximization
max {φG1 ,−φG2}.



It can be directly inferred that the set of feasible initial
conditions for the reach-avoid problem over [0, T ] is

RA(R,A, T ) =
⋃

(qi,ui)∈V

RAqi,ui(R,A, T ).

Since the input set V is finite, the above union is taken over
a finite number of sets represented by level set functions. For
sets G1, G2 with level set representations φG1 and φG2 , the
representation for φG1

∪φG2
is computed by taking pointwise

minimization min {φG1
, φG2

}.
The operator RA gives us a recipe for computing the

sets Ck→N . Namely, RA(R,A, T ) gives the set CN−1→N ,
which could then be used to initialize the computation of
CN−2→N . Stated more precisely, consider Algorithm III.1

Algorithm III.1 Computation of Exact Finite Horizon
Reach-Avoid Set
Require: R,A ⊂ Rn

1: S0 ⇐ R
2: for j = 0 to N − k − 1 do
3: Sj+1 ⇐ RA(Sj , A, T ) ∪ Sj

4: end for
5: return SN−k

By a special case of the argument presented in [27], we
have the following result.

Proposition 3.1: The output SN−k of Algorithm III.1
satisfies SN−k = Ck→N , k = 0, 1, ..., N − 1. In particular,
SN is the N step finite horizon reach-avoid set C0→N .

As a result of this proposition, it is clear that the set ERA

as required by Problem 2 is given by ERA = SN .

B. Infinite Horizon Invariant Set Computation

Now suppose the goal is instead to make the robot stay
in W over either a finite or infinite time horizon, then
we can take R = W and A = WC and perform the
reach-avoid set computation as in Algorithm III.1, except
replacing the statement Sj+1 ⇐ RA(Sj , A, T ) ∪ Sj by
Sj+1 ⇐ RA(Sj , A, T ). Then by a very slight modification
of the proof given in [27], Sk is the set of initial conditions
for which there exists a control policy, such that regardless
of the disturbance strategy, the closed-loop state trajectory
xcl(·) of (1) satisfies xcl(kT ) ∈ W and xcl(t) /∈ WC ,
for all t ∈ [0, kT ], or equivalently, xcl(t) ∈ W , for all
t ∈ [0, kT ]. In other words, Sk is an k step invariant set.
This is summarized in Algorithm III.2.

Algorithm III.2 Computation of Finite Horizon Invariant Set
Require: W ⊂ Rn

1: S̃0 ⇐W
2: for j = 0 to k − 1 do
3: S̃j+1 ⇐ RA(S̃j ,W

C , T )
4: end for
5: return S̃k

Clearly, the existence of an invariant set over infinite
horizon depends on the convergence of Algorithm III.2. For

our application, we assume that the algorithm converges
numerically to a fixed point at some iteration k0, namely
S̃k0+1 = RA(S̃k0 ,W

C , T ) = S̃k0 . Then by straightforward
induction, S̃k = S̃k0 , ∀k ≥ k0. This implies that the
invariant set EInv as required by Problem 1 is given by
EInv = limk→∞ S̃k = S̃k0

.

C. Reach-Avoid and Invariance Controller Synthesis

Given a finite horizon N , automated computations using
Algorithm III.1 and III.2 can be performed offline, yielding
the sets RAqi,ui(Sj , A, T ) for (qi, ui) ∈ V , and j =
0, 1, ..., N − 1, and the sets RAqi,ui(EInv,W

C , T ) for
(qi, ui) ∈ V . There are NR = (N + 1)(

∑m
i=0 Li) such sets,

where m is the number of modes and Li is the number of
quantization levels in qi.

Now consider a feasible initial condition x(0) ∈ SN . First,
we find the smallest index N0 ≤ N such that x(0) ∈ SN0 .
Suppose N0 = N , then by the property of the set SN ,
∃(qi, ui) ∈ V , such that x(0) ∈ RAqi,ui(SN−1, A, T ).
Hence, by choosing (q(0), u(0)) = (qi, ui) as our control
input in step k = 0, we ensure that regardless of the choice
of disturbance input d(·) ∈ Dq(0), the state trajectory satisfies
x(T ) ∈ SN−1 = C1→N and x(t) /∈ A, ∀t ∈ [0, T ].

At the next time step, we obtain a state measurement x(T ),
find the smallest index N1 ≤ N − 1 such that x(T ) ∈ SN1

,
and select controls (q(T ), u(T )) using a similar procedure.
As can be seen, the choice of (q(T ), u(T )) depends upon
the realization of the disturbance d(·) ∈ Dq(0). Proceeding
in this manner, we obtain (q(kT ), u(kT )), k = 0, 1, ..., N−1
as a function of the state measurement at each time step and
ensures that x(kT ) ∈ R for some k ∈ {0, 1, . . . , N} and
x(t) /∈ A for all t ∈ [0, kT ], regardless of the choice of
disturbance strategy γ0→N ∈ D0→N .

Now by assumption, the set R is a subset of the invari-
ant set EInv . Then by the properties of EInv, x(kT ) ∈
R implies that ∃(qi, ui) ∈ V , such that x(kT ) ∈
RAqi,ui(EInv,W

C , T ). Hence, by choosing the control
input (q(kT ), u(kT )) = (qi, ui) in time step k, we ensure
that regardless of the choice of disturbance input d(·) ∈
Dq(kT ), the state trajectory satisfies x((k + 1)T ) ∈ EInv

and x(t) ∈ W , ∀t ∈ [kT, (k + 1)T ]. This procedure can be
repeated over all subsequent time steps to keep the trajectory
inside W , thus accomplishing the overall objectives.

To state this more formally, define I = {0, 1, . . . , N − 1}
and let 2V be the power set of V . Then the explicit finite
horizon reach-avoid control policy is given by the time-
varying, set-valued state feedback law FRA : Rn × I → 2V

FRA(x, k) = {(qi, ui), x ∈ RAqi,ui(SNk−1, A, T )} (3)

where Nk ≤ N − k is the smallest index such that x ∈
SNk

. On the other hand, the infinite horizon invariance
control policy is given by the time invariant, set-valued state
feedback law FInv : Rn → 2V

FInv(x) =
{
(qi, ui), x ∈ RAqi,ui(EInv,W

C , T )
}

(4)

In pseudo-code, these feedback policies can be imple-
mented as in Algorithm III.3.



Algorithm III.3 Online Implementation of Reach-Avoid and
Invariance Control Policies
Require: x(0) ∈ SN

1: InvMode⇐ 0
2: for k = 0, 1, ... do
3: Fk ⇐ ∅
4: Measure state x(kT )
5: if x(kT ) ∈ R or InvMode ≡ 1 then
6: InvMode⇐ 1
7: for all (qi, ui) ∈ V do
8: if x(kT ) ∈ RAqi,ui(EInv,W

C , T ) then
9: Add (qi, ui) to Fk

10: end if
11: end for
12: else
13: Find smallest Nk ≤ N − k such that x(kT ) ∈ SNk

14: for all (qi, ui) ∈ V do
15: if x(kT ) ∈ RAqi,ui(SNk−1, A, T ) then
16: Add (qi, ui) to Fk

17: end if
18: end for
19: end if
20: Apply (q(kT ), u(kT )) ∈ Fk

21: end for

Remark: For any initial condition x0 ∈ Sk\Sk−1, k =
1, ..., N , FRA is guaranteed to control x0 into R within k
time steps, regardless of the disturbance strategy. Further-
more, given that x0 /∈ Sk−1 = C0→k−1, there does not exist
an admissible control law that can accomplish the same task
within k−1 time steps. In this sense, FRA can be interpreted
as a robust minimum time to reach control law.

IV. EXPERIMENTAL RESULTS

To illustrate this methodology, we will consider the prob-
lem of controlling a quadrotor helicopter first to some posi-
tion on top of a stationary ground vehicle, while satisfying
constraints on the velocity, and then hovering over the vehicle
as it starts moving. The internal disturbances appear in the
form of model uncertainties and actuator noise, while the
external disturbance is the movement of the ground vehicle,
which is not planned ahead of time. The control policies
are implemented on the Stanford Testbed of Autonomous
Rotorcraft for Multi-Agent Control (STARMAC) (see Figure
1), an unmanned aerial vehicle platform consisting of six
quadrotor helicopters each equipped with onboard computa-
tion, sensing, and control capabilities [30].

Under a previously designed inner control loop, the
position-velocity dynamics in the x and y directions can be
assumed to be decoupled, with pitch and roll angles as the
respective control inputs. Then from the point of view of the
high level controller, the dynamics of the vehicle under pitch
and roll commands can be approximated as

Fig. 1. An overview of components on STARMAC.


ẋ1
ẋ2
ẏ1
ẏ2

 =


x2 + d1

g sin(−φ) + d2
y2 + d3

g sin(ψ) + d4

 (5)

where x1, x2 and y1, y2 are the position and velocity of
the quadrotor in the x-axis and y-axis, respectively, with
respect to the position and velocity of the ground vehicle, g
is the gravitational constant, φ is the pitch command, ψ is the
roll command, and d = (d1, d2, d3, d4) are the disturbance
terms. For d1 and d3, the disturbance bound is chosen to be
±0.1m/s, corresponding to ±10% of the maximum allowed
vehicle velocity. For d2 and d4, a slightly larger disturbance
bound of ±0.5m/s2 is selected, corresponding to about
±30% of the maximum allowed acceleration, in order to
capture the unknown acceleration of the ground vehicle.

For our experiments, the hover region W is chosen to
be a squared shaped region centered on the ground vehicle,
with some tolerance on the relative velocity, while the
avoid region A is the set of all relative velocities violating
a velocity constraint. The precise problem parameters are
summarized below:
• Hover Region (W ): |x1|, |y1| ≤ 0.3 m for position, and
|x2|, |y2| ≤ 0.5 m/s for velocity

• Avoid Region (A): |x2|, |y2| > 1 m/s for velocity
• Time Step (T ): 0.1 seconds
• Time Horizon for Reaching W (N ): 25 time steps
• Range of Attitude Commands (φ, ψ): -10, -7.5, -5, -2.5,

0, 2.5, 5, 7.5, 10 degrees
The hover region and avoid region are plotted in the

position-velocity plane in Figure 2. Given that the dynamics
in the x and y directions are decoupled, we can perform the
reachability analysis in two dimensions to save computation
time and use the result to synthesize control policies for the
pitch and roll angles, up to a sign change in the commanded
angle. For the rest of this section, the results of the reachable
set computation will be shown in the position-velocity plane,
with the understanding that the same sets apply to movement
in both the x and y directions.

Using the computation procedure described in Section III-
B, we compute an invariant subset EInv of the hover region.



Fig. 2. Plot of Hover Region and Avoid Region in the Position-Velocity
Plane.

The result is shown in Figure 3. Intuitions suggest that if the
vehicle is at a large positive displacement, with high positive
velocity, it is likely to exit the hover region. Indeed these
states are excluded from EInv, along with states correspond-
ing to large negative displacement and velocity. To accom-
plish the reach and hover objectives, we choose a subset R =
{(x1, x2, y1, y2) : |x1|, |y1| ≤ 0.2m, |x2|, |y2| ≤ 0.2m/s} ⊂
EInv to be the target zone for the finite horizon reach-avoid
algorithm.

Fig. 3. Plot of Invariant Set and Finite Horizon Target Zone in the
Position-Velocity Plane.

Under Algorithm III.1, we initialize the computation of
the finite horizon reach-avoid set using R and progress
backwards in time over sampling intervals. The resulting
reach-avoid sets are shown in Figure 4 (a) and (b), for
time steps 1 through 5 and time steps 21 through 25,
respectively. As intuitions suggest, at a positive displacement,
one needs negative velocity to arrive at the origin, and vice
versa for negative displacement. Thus, the growth of the
sets are angled towards the second and fourth quadrants of
the position-velocity state space in the first few time steps.
Over longer time horizons, the velocity constraints come into
effect and limits the growth of the reach-avoid sets.

The control policy satisfying the desired objectives is im-
plemented at a high-level control layer onboard the quadrotor
vehicle according to Algorithm III.3. For the actual experi-

(a)

(b)

Fig. 4. (a) Reach-avoid Sets at Time Steps 1 through 5; (b) Reach-avoid
Sets at Time Steps 21 through 25.

ments, the reachable sets are pre-loaded onto the on-board
memory. During run-time, the vehicle consults these sets
when selecting the appropriate pitch and roll commands
based upon position and velocity measurements. Taking into
account that there may be sources of noise and disturbance
not accounted for in the disturbance bound estimates, for
example occasional acceleration bursts by the ground vehi-
cle, we add an extra condition that if the invariant set is ever
violated during run-time, the controller is switched back into
finite horizon reach-avoid mode.

In Figures 5 and 6 the trajectory flown by STARMAC
is shown for an experimental trial where the quadrotor is
initialized at approximately (x1, x2, y1, y2) = (1, 0, 1.1, 0)m,
relative to a stationary ground vehicle placed at the origin.
The squares in these plots marks the initial condition of the
quadrotor, while the circles marks the relative states at 1.8
seconds into the experiment, when the finite horizon target
zone is first attained. After the target zone is attained, the
quadrotor hovers over the stationary ground vehicle for about
35 seconds, upon which time the experiment is terminated.
The trajectory plots show that the vehicle indeed achieves
the desired objectives of reaching the target zone within
2.5 seconds while satisfying safety limits on the allowed
velocity, despite perturbations by time varying disturbances.
Furthermore, except for a few brief violations, the quadrotor



remained within the desired hover region over the course of
35 seconds. The source for these violations can be attributed
to time-lag in the vehicle response, noise in the velocity
estimation, and numerical errors in the computation of the
reachable sets, which are not formally taken into account.
However, despite these non-ideal operating conditions, the
quadrotor is shown to quickly recover itself inside the hover
region using the finite horizon reach-avoid controller.

Fig. 5. East Position (m) vs North Position (m) of STARMAC for 35
Seconds.

Figure 7 shows another experimental trial where STAR-
MAC first hovers over a remote-controlled ground vehicle
using finite horizon reach-avoid controller and then follows
the vehicle as it starts moving using infinite horizon invariant
controller, over the course of 44 seconds. As depicted in
the plot, the quadrotor reaches the finite horizon target zone
within 2.1 seconds and begins to hover over the ground
vehicle. The subsequent trajectory of the ground vehicle was
human controlled, and not planned ahead of time. As such,
STARMAC has to react at run-time to remain inside the
hover region over the vehicle. Snapshots of the quadrotor
and ground vehicle trajectory at about 20 seconds and 33
seconds into the experiment are shown in Figure 8. As can be
seen, the quadrotor vehicle remains for the most part inside
the hover region, except for a few brief violations, which
in this case can be also attributed to occasional bursts in
acceleration of the remote controlled ground vehicle.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed a reachability-based methodol-
ogy for motion planning under dynamic uncertainty. Using
a game theoretic formulation of the problem, we gave a sys-
tematic procedure for synthesizing feedback control policies
to achieve high level objectives of safety, target attainability,
and invariance, under bounded, time-varying disturbances,
and discussed the implementation of the policies in real-time
control of an autonomous vehicle.

There are several possible directions for future work. First,
it can be seen from the experimental results that the formal
guarantees relies on the availability of disturbance bounds.

(a)

(b)

Fig. 6. (a) East Position (m) vs East Velocity (m/s) of STARMAC for 35
Seconds; (b) North Position (m) vs North Velocity (m/s) of STARMAC
for 35 Seconds.

Methods are needed to rigorously characterize such bounds
given certain physical models and operating conditions.
Second, we note that in the current formulation of Hamilton-
Jacobi equation, only a terminal cost is used to solve the
reachability problem. A possible future direction would be
to consider adding running cost, so as to choose control
strategies which minimize a particular performance index.
Finally, in order to apply this technique to higher dimensional
systems, efficient schemes for approximation and represen-
tation of reachable sets will need to be investigated for
particular forms of system dynamics.
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